SMART MATERIAL POWERED ELECTROHYDROSTATIC ACTUATORS

Keith Bridger, John Sewell, Arthur Cooke *Active Signal Technologies, Inc.*

George Small MOOG Inc.

Troy Schelling
Virginia Power Technologies, Inc

SUMMARY #1 -- PROGRAM OBJECTIVE AND SCOPE

AIM: Develop a power-by-wire actuator small enough for unmanned aircraft

SMART MATERIAL ENABLER: Replacement of the rotary piston pump in a developmental Electro-Hydrostatic Actuator (EHA) with a high frequency magnetostrictive solid state pump

Phase-1 Scope:

- Demonstrate a brassboard high power density smart-material pump connected to an electro-hydrostatic actuator
 - 1-in stroke @ 1000 lb load (3.5 ins/sec)
 - 15-Hz bandwidth

Phase-II Scope:

 Fully integrate Smart Material pump with EHA to meet the requirements of the X-36 unmanned aircraft (-65°F to 275°F)

SUMMARY #2 -- PROGRAM MILESTONES & STATUS

Program has not started

Took Name / Deliverable	Program Year1				Program Year2			Program Year3				
Task Name / Deliverable		2nd	3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd	4th
											_	
PHASE I: Brassboard Demos										oump		
Develop smart material pump								•		ected		
Develop smart material pump				$\overline{}$	>				repla		-17	′ ∥
Develop power conditioning							ro	tary _I	pump		Л	
					$\overline{}$		lacksquare	***************************************				
Demonstrate actuation by pump						=	\rangle					
PHASE II: Actuator Demo												
Modify nump/alastronias for integration												<u>Inte</u>
Modify pump/electronics for integration								_	-			
Modify EHA configuration for integration								_	_			
												-
Integrate pump and actuator												
Compact actuator performance tests												
Compact dotdator porrenmance toole												\rightarrow

SUMMARY #3 -- ROLES AND RESPONSIBILITIES

System Element	Tasks (Organization)	<u>Team Member</u>		
	Design and fab. piston driver	Active Signal		
Smart Material Pump	Design & fab. smart material check valve			
	Model dynamics of driver and valveSelect design and fab valve	Active Signal		
	Model fluid flow through valveOptimize phase relation with piston	Moog		
Power Electronics	Design & fab power electronics			
	 Model V, i requirements of driver Select design and fab/buy electronics 	Active Signal		
	Model characteristics of candidate designs	Virginia Power Technologies:		
System Integration	Design / fab hydraulics & actuator	Moog		
	 Model fluid flow/loss in hydraulics Design hydraulic controls / safety / redundancy Assemble & test brassboard actuator 	-		

SUMMARY #4 -- MAJOR ACCOMPLISHMENTS OF PAST YEAR

Model contract has been received from the Air Force and reviewed

We plan to have a working testbed demonstrating smart material pumping by the next TIM

SUMMARY #5 -- LESSONS LEARNED / TRANSITIONS

Major transition is to distributed flight controls

- Fly by wire / power by wire
- Unmanned aircraft such as the X-36
- Moog is a world leader in aircraft actuators
- New procurements such as JSF and next generation Airbus may specify all-electric actuation

Secondary transition to underwater craft and weapons flow controls

- Large stroke/high force up to 1 kHz for rapid maneuvering
- More stable temperature environment allows PMN to be used to increase power density

TECHNICAL OVERVIEW

Existing Electrohydrostatic Actuators (EHA's) provide mature experimental platform for delivering *power-by-wire* Smart material pump enables the EHA to be scaled to compact size and high power density

SMART MATERIAL SELECTION -- THERMAL LIMITATIONS

Piezoelectric losses (tand) increase with temperature

heating limits drive at high power / high duty cycle to solid lines below

PMN has losses (tand) that decrease with increasing temperature -- self limiting

<u>Terfenol</u> performance much less temperature dependent than PZT or PMN

Intrinsic mechanical power, $P_{\rm M}$

$$P_M = \frac{1}{2} \mathbf{w}_{33}^2 E_{rms}^2 \mathbf{E}_{3}^T \mathbf{e} \mathbf{Q}_T$$

Heat dissipated, $P_{DE} + P_{DM}$

$$P_{DE} = \frac{1}{2} \mathbf{w} E_{rms}^2 \mathbf{k}_{33}^T \mathbf{e}_0 \tan \mathbf{d}$$

$$P_{DM} = \frac{1}{2} \mathbf{W} E_{rms}^2 k_{33}^2 \mathbf{k}_{33}^T \mathbf{e}_0 \frac{Q_T^2}{Q_M}$$

SMART MATERIAL PUMP DRIVER -- INTRINSIC POWER DENSITY

Assume max power transfer for $Z_{\text{INT}} = Z_{\text{LOAD}}$ For stiffness, k, controlled impedance $Z = k l \mathbf{w}$ Effective power density, $P = \frac{1}{2} F_{B} \mathbf{v}$ Rearranging $\Rightarrow P = \frac{1}{2} Y S^2 \mathbf{w}$

	,	PC				
	Materials:	PZT-8	PZT-4	PZT-5	PMN	Terfenol-D
	Modulus (Gpa):	74.1	64.5	47.9	70.0	30
Max rms drive field (MV/m):		0.56	0.4	0.12	0.4	-
	Max rms strain (-):	0.0134%	0.0128%	0.0066%	0.0320%	0.0318%
	Density (kg/m ³):	7800	7800	7800	7900	7800
100		27	21	4	143	61
200		54	43	8	285	122
500		135	106	21	713	306
1000	Frequency (Hz)	269	213	42	1,425	612
2000		539	426	84	2,850	1,223
5000		1,347	1,064	210	7,126	3,059
10000		2,695	2,129	420	14,252	6,117

"LOCAL" HYDRAULIC DESIGN

Hydraulic design incorporates:

- •distributed lumped parameter model of closed system
- •redundancy / overpressure releases / cavitation

Design concepts based on:

- CAD/CAE designs
- EHA prototypes
- •MATLAB models of response times, flow, pressure drops, leakage
- empirical data on damping characteristics of the system

CONCLUSIONS

- A smart material pump potentially enables selfcontained EHA within the tight packaging requirements of unmanned aircraft
- By incorporating the smart material pump into an existing, tested EHA prototype, the development effort is focused entirely on the smart material driver and corresponding smart check valve
- Very high frequency piston operation results in high power density, and fluid pumping is enabled at these frequencies by an active check valve